
MDF Rose Engine Lathe 2.0 with Stepper Motor Drive

Instructions for Building the Stepper Controls

Version 1.2 15 December 2020

This document is intended to help one unfamiliar with the MDF rose engine to build one easily. It is designed to go with the kit you can purchase from www.ColvinTools.com.

There are some variations from the ideas documented by Jon Magill at www.rogueturner.com. Where this is the case, we have tried to document such changes and provide the reason for the change.

This document is also designed to use a stepper motor for driving the spindle.

If you have any questions, please contact us at ColvinTools@Gmail.com.

Good luck.

Rich Colvin & Jack 7immel

Table of Contents

Getting Started	
Overview of Connections	
Bill of Materials	
Controls Box Enclosure	1
Before Assembly	
Assembly	
Electrical Plates for Connectors	18
Printed Circuit Board	22
Assembly of the Control Box Electronics	30
Mounting the Covers	30
Mounting Electronics to the MDF Base	
Switch Settings	42
Stepper Motor Connections	43
Attaching the Stepper Motor to the Headstock	4
Assembly of the Nextion HMI Box	47
System Setup and Program Loading	5
Finishing It Up	50
4Axes.ini Config File Settings	57
Optional Configurations	62
Option 1: Less Functional Model	63
Option 2: Alternative Stepper Motor Drivers	62
Document Version History	63

Getting Started

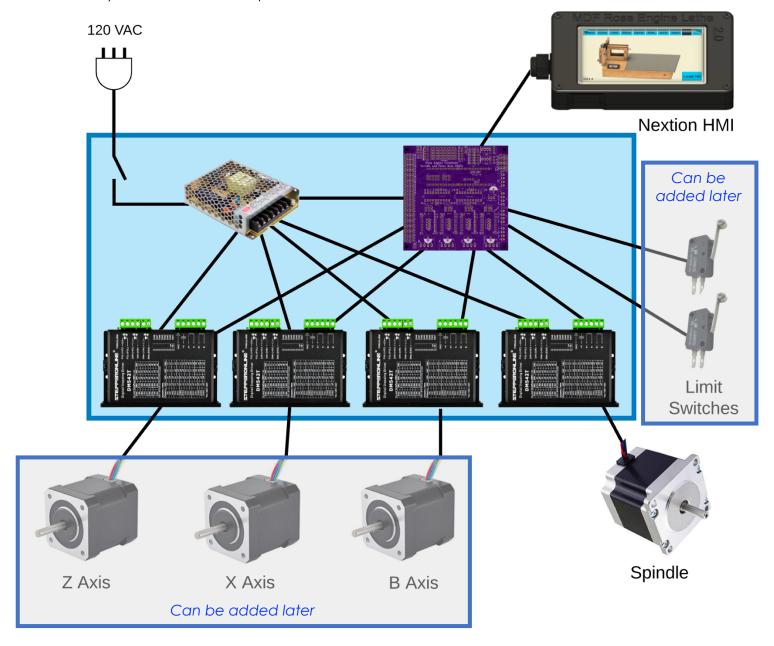
As you get started with building this machine, please consider making the machine according to the outlined instructions. There are a boatload of ways you can modify this, and, quite frankly, the MDF rose engine encourages experimentation. But it is best to attempt those modifications after understanding how it works. Some ideas which sound grand may not appear so after understanding how the machine works (we speak from experience).

If you have any questions on the terminology in this document, check out the "Ornamental Turning Book of Knowledge" (www.OTBoK.info).

This document outlines the approach for wiring this machine using:

- 1. Rose Engine Controller Spindle and Three Axes V002c printed circuit board
- 2. DM542T Stepper Motor Drivers
- 3. Nextion 4.3" HMI Display, model NX4827K043

Standards are outlined in a companion document and are used for the compilation of this document.


Cautions

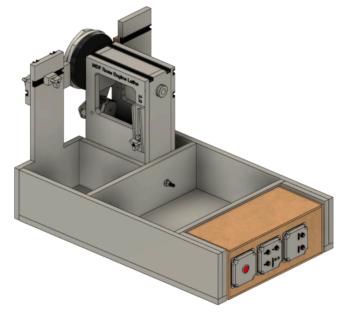
- 1. **Do not perform any changes to this system when the system is powered on.** Power down and unplug the system before attempting any work.
- 2. If your local electrical code requires for any differences from what is documented here, those requirements take precedence over this document.
- 3. If you feel uncomfortable with anything in these instructions, consider having a licensed electrician perform the work.

<u>Please also note</u>: Permission is not granted to manufacture these for sale.

Overview of Connections

The whole system is shown in the picture below.

The system we supply with the MDF Rose Engine Lathe 2.0 Spindle Drive Option includes:


- 1. Everything in the Controls Box (the box in blue above)
 - a. Power cord and on/off switch
 - b. Power supply
 - c. Printed Circuit Board with all components attached for 4 drives
 - d. Stepper Motor Drivers (4 ea.)
 - e. Connectors for
 - i. Nextion HMI

- ii. 4 stepper motors
- iii. 6 limit and homing switches
- 2. Nextion HMI with connecting cable
- 3. Spindle stepper motor with connecting cable, attaching hardware, drive gears, and drive belt.

The other 3 stepper motors and the two limit switches (and associated attaching cables) are not included but can be added by the user.

Some have chosen to put the stepper motor controls in the lathe's carcass, under the bed of the lathe. However, placing all the pieces together in a separate box gives these benefits:

- 1. This controls box is designed be placed under the bed in the MDF Rose Engine Lathe 2.0 (as shown in the picture to the right {the bed cover is removed}).
- 2. This approach also allows for the controls box to be used with the original MDF Rose Engine Lathe, just placing the box somewhere near the lathe.
- 3. This also frees up space under the bed for:
 - a. Storage of parts or tools, or
 - b. Making a gap-bed lathe.
- 4. The many connections between the various pieces inside the box are already in place and the user does not have to figure out the correct alignment of connectors when building the MDF Rose Engine Lathe.

MDF Rose Engine Lathe 2.0 (B1 and B1A removed)

5. The connections to the stepper motors and limit switches are documented as standards. This allows for the creation of attachments (such as a curvilinear slide) with a built-in stepper motor and connecting it to the controls box.

The details for how we are building the one you can buy are below. These are documented for our use to ensure consistency, and we are publishing them for anyone who wishes to build their own.

The sequence of activities follows the layout of this document. That was done consciously. Changes to the sequence should be considered strongly before making changes.

Bill of Materials

Parts required for building this are below. The item numbers are shown in the following drawings using an orange, circled number like the one to the right.

Item				Source	
#	ltem	Qty	Source	Part Number	Comments
	Printed Circuit Board Assembly				
101	Printed Circuit Board (PCB)	1	OSH Park	4Rose_002c_Gerbers copy	
102	Header Sockets	2	Digi-Key	\$7022-ND	24 pins each – mfgr p/n PPTC241LFBN-RC
103	20-pin DIP sockets	2	Digi-Key	ED3054-5-ND	
104	10 KΩ resistors	8	Digi-Key	CF14JT10K0CT-ND	
105	100 µF electrolytic capacitor	1	LCSC	C59414	Mfgr p/n: KM101M050F115A
106	74HCT245 Octal Bus Transceiver, 3-state	2	Digi-Key	296-1612-5-ND	
107	R-78E5.0-1.0 DC/DC Converter	1	Digi-Key	945-2201-ND	
108	Teensy 3.5	1	PJRC	Teensy 3.5 pins	Be sure to get the one with the pins already soldered into place.
	Electrical Items				
201	AC/DC Power Supply - LRS- 100-24	1	Digi-Key	1866-3314-ND	
202	DM542T Stepper Driver	4	StepperOnline	DM542T	
203	Nextion 4.3" HMI Enhanced	1	ITEAD.cc	NX4827K043	
204	Terminal Block, 10 circuits, low profile	1	Mouser	538-39100-1910	Molex is the mfgr; their p/n is 39100-1910
205	Power Switch	1			SPST Toggle

11				•	
Item #	lkovo	Ohr	Source	Source Part Number	Comments
	ltem CY 1// 4 S	Qty	Source	ran Number	
206	GX-16/ 4 Socket	4			May come as a pair of sockets and
					plugs (i.e., including #214)
207	3.5mm Audio Jack, Female	6			
208	Utility box cover, 2 gang	2		Hubbell-Raco 804C	
209	Utility box cover, 1 gang	1	Amazon	Hubbell-Raco 861	
210	Utility box cover, 1 gang	1	Amazon	Hubbell-Raco 860	
211	3/8 in. Twin-Screw Cable	1	(hardware store)		
	Clamp Connectors		,		
212	Cord Grip	2	McMaster-Carr	69915K47	
213	Stepper Motor	1	StepperOnline	23HS30-30045	For the spindle drive
	• •		· ·		NEMA 23 bipolar 1.8°
					1.9 Nm, 2.8A, 3.2V
					57 x 57 x 76 mm
214	GX-16/ 4 Plug	1	Amazon		May come as a pair of sockets and
211	CX 10, 1110g	•	7 (11/02011		plugs (i.e., including #206)
	Cables				plogs (i.e., incloding in 200)
301	Cabling – CAT 5 or higher				
302	Cabling – 20 AWG/4,				
302	stranded				
303	Cabling – 20 or 22 AWG/2,				
303	stranded or solid core				
304	Cabling – 16 AWG/3,				Can cut off the female end of a
304	stranded				grounded extension cord.
	Screws, etc.				grounded extension cord.
401	•	4	A A A A A SIGH SIN CONTRA	0.4/20.4.002	
401	Nylon Spacer	4	McMaster-Carr	94639A293	
	(Unthreaded) for #8 screw				
	- 1/4" OD, 1/4" length				
402	Brass Heat-Set Inserts for	4	McMaster-Carr	94459A260	If you take option #1 as outlined on
	Plastic, #4-40, 0.170"				pg. 48, you should use these. If not,
					they are not needed. These go with
					#403, below.

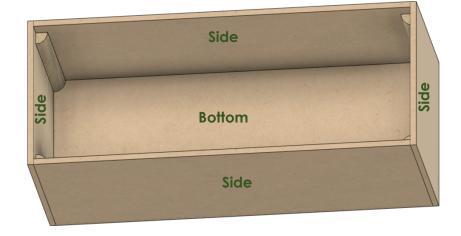
Item					
#	Item	Qty	Source	Part Number	Comments
403	Screws, #4-40, 3/4"	4	McMaster-Carr	97763A322	If you take option #1 as outlined on pg. 48, you should use these. If not, they are not needed. These go with #402, above.
404	M3 Screws, Thread Forming	4	McMaster-Carr	96817A300	
405	Magnets	4	McMaster-Carr or Amazon	5862K14	1/2" outside diameter with hole in center for attaching to an object via a screw. Used on bottom of the 3D-printed enclosure for the Nextion HMI display
406	Sheet Metal Screws, #4, 3/4" long, round head		McMaster-Carr	90935A137	These work acceptably in the MDF for the purposes they are designed to be used.
407	Particle Board Screws, #6, 3/4" long, round head		McMaster-Carr	91555A115	
408	Particle Board Screws, #6, 5/8" long, flat head		McMaster-Carr	90252A246	
409	Sheet metal screws, #4, 5/16" long, flat head		McMaster-Carr	90065A107	Used to attach #405 magnets to the 3D-printed enclosure for the Nextion HMI display.
410	Torx Round Head Thread- Forming Screws for Plastic, #4, 7/8" long		McMaster-Carr	96001A217	If you take option #2 as outlined on pg. 48, you should use these. If not, they are not needed.
	Spindle Drive Parts				
501	Timing Belt	1	MiSUMi	GBN655EV5GT-90	GT3 5mm pitch 131T / 655mm long 9mm wide
502	Spindle Pulley	1	Colvin Tools		Attached to the spindle via the flange.

Item #	Item	Qty	Source	Source Part Number	Comments
503	Stepper Motor Pulley	1	Stock Drive Products (www.sdp-si.com)	A 6A55-012DF0908	Attached to the stepper motor 5 mm (GT2) Pitch,12 Teeth, 0.25" Bore, 2 Flanges / With Hub, Aluminum Alloy Timing Pulley for .354 (9mm)" Wide Belt
504	Stepper Motor Attachment Bracket & Parts	1	Colvin Tools		 Includes: Bracket with Idler Mounting bolts, nuts, and spacers to attach to headstock Mounting screws to attach stepper motor
	Touch Screen Parts				
601	Touch Screen Case, 3D printed	1	Colvin Tools		Can also get plans to 3D print this from elfren's repository on GitHub. The folder is RoseEngine_SpindleAndAxis / Nextion / Enclosure_43.
	Optional Parts				
901	Limit switch	Up to 6	McMaster-Carr	7779K13	Needs to be normally off with a momentary on.
902	Magnetic Base Stand with Noga Arm		Amazon		For holding the limit switch. Clockwise Tools MGBR-01 is a good one to consider.

Not all screws are shown, only the ones which matter for size or are hard to find.

Controls Box Enclosure


The assembled box has

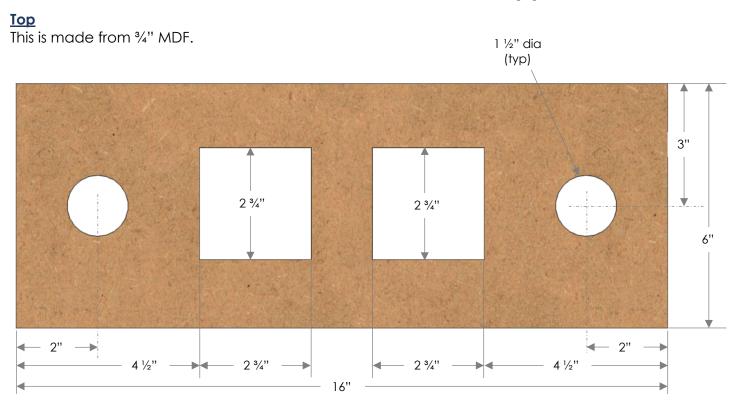

- 4. A top and bottom made from 3/4" MDF,
- 5. Four sides made from 1/4" MDF, and
- 6. 4 corner posts made from quarter-round trim.

Removing the top reveals the box shown to the right.

The quarter-rounds are used to give the top and bottom something to set the spacing correctly.

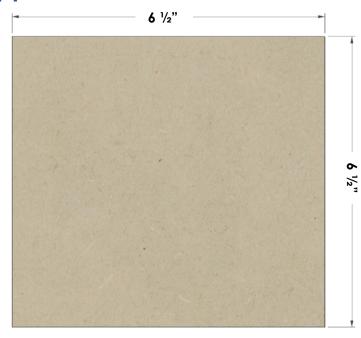
The four $\frac{1}{4}$ " thick sides are screwed to the top and bottom.

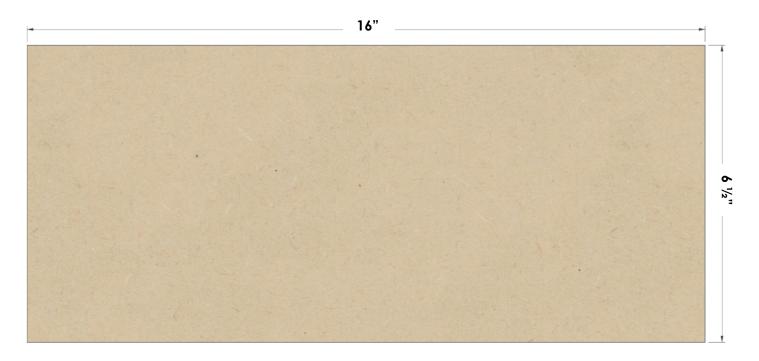
Replacing the top, and removing the sides reveals the view to the left.


Before Assembly

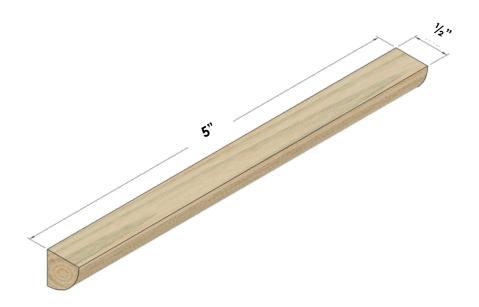
The following instructions should be followed before assembling the controls box

Bottom


This is made from 34" MDF.


Short Sides (2)

There are two of these, and they are made from 1/4" MDF.


Long Sides (2)

There are two of these, and they are made from 1/4" MDF.

Quarter Rounds (4)


There are four of these, and they are made from any good trim material. These are ½" radius, but that is not terribly critical.

Assembly

Glue the four quarter rounds to the ends of the two long sides. Be certain to:

- 1. center the quarter round so there is 3/4" on each end, and
- 2. ensure the edges are flush to each other.

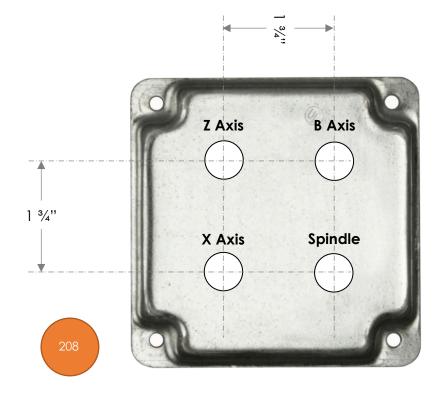
Electrical Plates for Connectors

Power Infeed

Use a 1-gang plate with the hole punched out for the cable strain relief. Secure the power cable in place using the 3/8 in. Twin-Screw Cable Clamp Connector. Wait until later to tighten the screws holding the power cable into place.

Power Switch

Use a 1-gang plate which is blank. Drill a ½" hole in the center and secure the power switch to it.



Stepper Motor Plugs

Use a 2-gang plate which is blank. Drill 4 holes which are each 5/8" diameter.

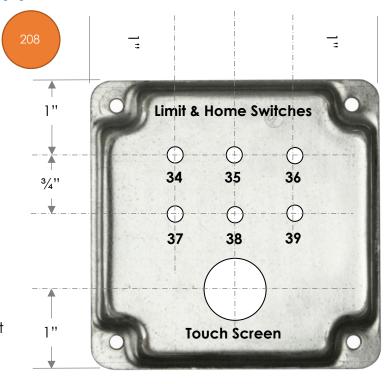
Label these as:

- Z Axis
- B Axis
- X Axis
- Spindle

MDF Rose Engine Lathe 2.0

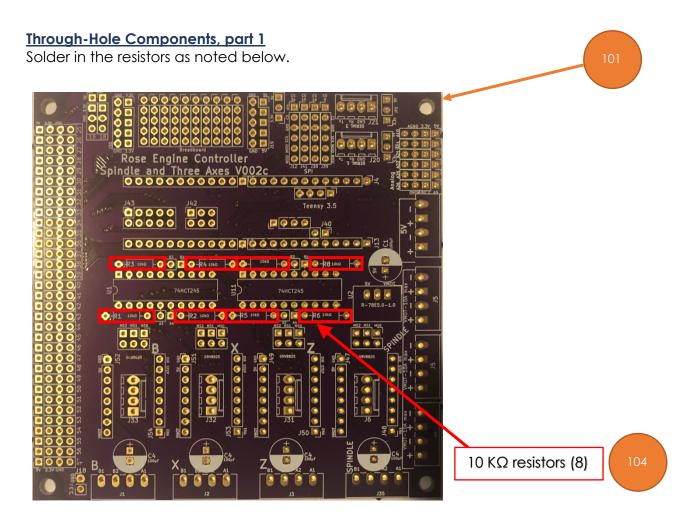
Build Instructions – Stepper Controls

Other Plugs


Use a 2-gang plate which is blank.

Drill 6 holes which are each 15/64" diameter. Label these as:

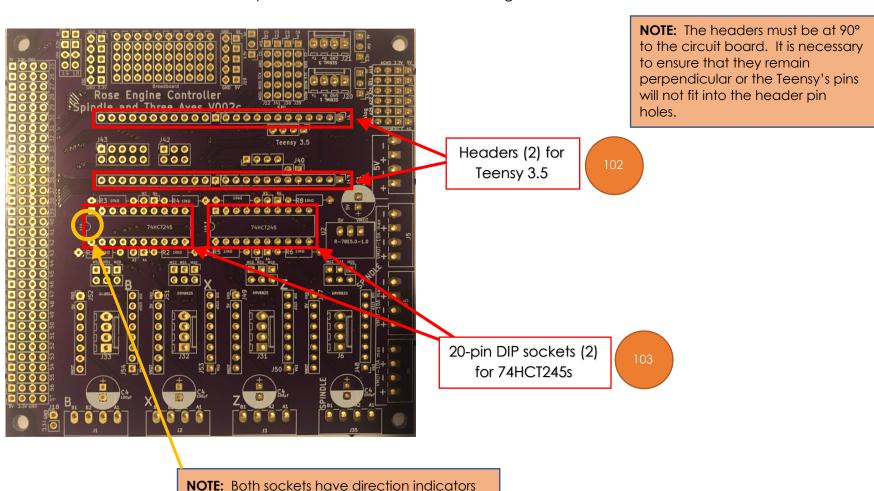
- Limit & Home Switches
 - 0 34
 - 0 35
 - 0 36
 - 0 37
 - 0 38
 - 0 39


For the touch screen (the Nextion HMI), there are two options:

- 1. If you want to use an RJ-45 connector to enable disconnecting the display, then drill 1 hole which is $^{31}/_{32}$ " diameter. Center it left to right, and 1" from the outer edge. Label this as:
 - o Touch Screen
- 2. You can pass the cable thru this plate using a cable grip as used on the Nextion Display case. If you pursue this option, drill 1 hole that is ½" diameter. Center it left to right and 1" from the outer edge.

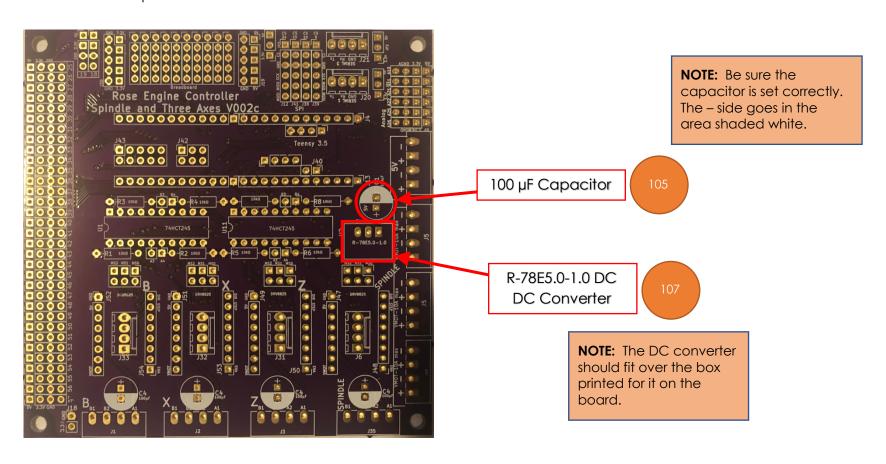
Printed Circuit Board

Attach the parts to the Rose Engine Controller Spindle and Three Axes V002C printed circuit board (PCB) using the instructions below.



Headers for Integrated Circuits

Solder in the 2 headers for the Teensy, and the 2 DIP sockets for the integrated circuits.


on them. Ensure they match the direction indicators on the board (the little curved part of the marking on the board). This is to ensure

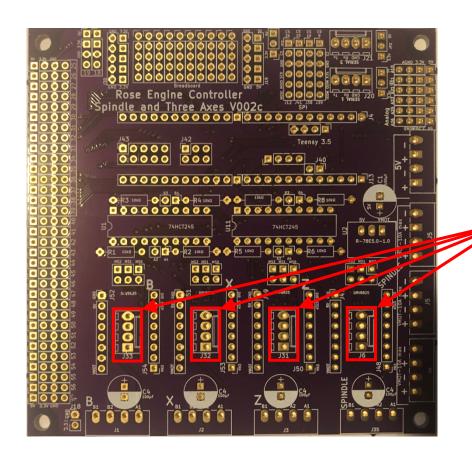
the 74HCT245s are inserted correctly.

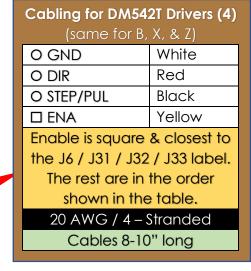
Through-Hole Components, part 2

Solder in the components noted below.

Cabling, general

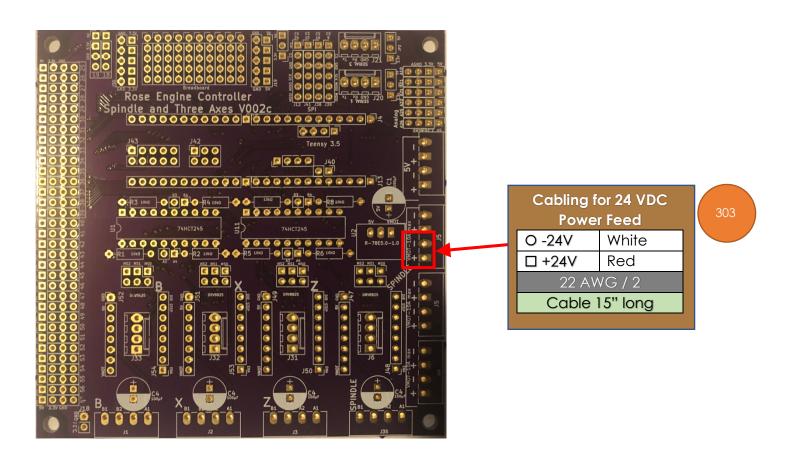
This section is about connecting the PCB to the other components via appropriate cabling. This can be done two ways:


- 1. Best practice recommendation is to put jacks onto the board and connect the wires via the opposite jack end. If you go that route, do consider making the design "dummy proof". By that I mean,
 - a. Use different types of connectors for the Nextion HMI display than for the stepper motors. Both use a 4-wire connection, and you want to prevent the connector being attached to the wrong place. The two typical options are:
 - i. Use a male connector on the PCB for one (e.g., the Nextion display), and female connectors for the other (e.g., the stepper motors), or
 - ii. Use a 5-wire connector for one, just ignoring the 5th wire option.
 - b. Use keyed connectors which prevent the user plugging the cable into the board backwards.
- 2. The option that can also be taken is to solder the wires directly to the board.
 - a. That works well unless the wires are subject to movement which can cause them to break from the PCB. If you plan to disassemble and re-assemble your system often, consider not using this option.
 - b. However, this option helps in that the connectors won't jar loose.


NOTES:

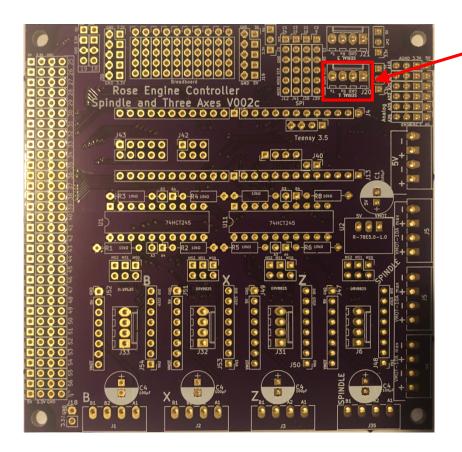
- 1. If you connect the wires to the PCB directly, I recommend soldering the stranded wires into place first. They are the most difficult.
- 2. Before soldering the stranded wires, be sure to tin the wires first.

Cabling, part 1


Solder in the cables as noted below.

Cabling, part 2

Solder in the cables as noted below.



MDF Rose Engine Lathe 2.0

Build Instructions – Stepper Controls

Cabling, part 3

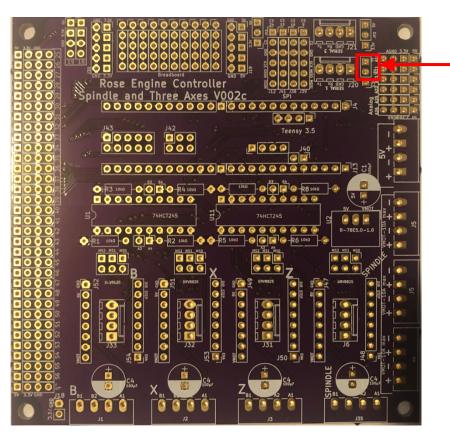
Solder in the cables as noted below.

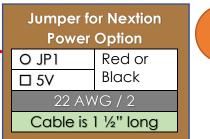
Cabling for Nextion Display			
O Tx	White/Green		
O Rx White/Orange			
O GND Orange			
□+5V Green			
+5V is closest to the J20 label. The rest			

are in the order shown in the table.

Cat-5 or higher

- If connecting thru the panel to the Nextion HMI display (using a cable grip on the panel), 7 feet long. (recommended)
- If connecting to a panel mount connector, 8" long.

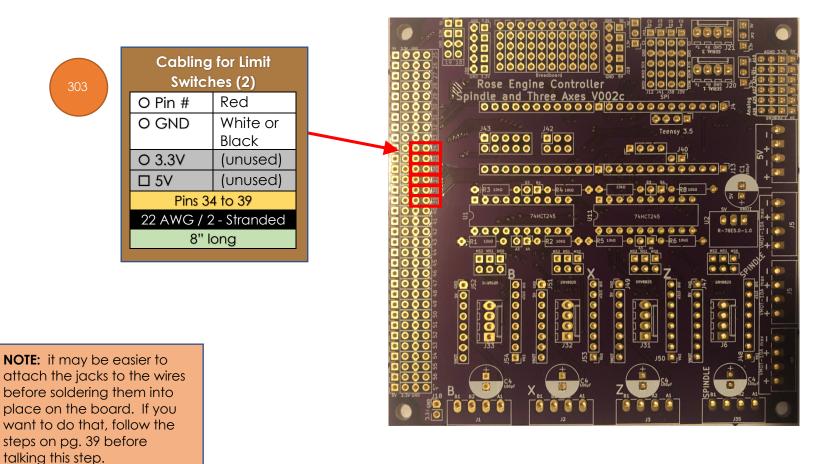

NOTE:


- Tx on the PCB is connected to Rx on the touch screen.
- Rx on the PCB is connected to Tx on the touch screen

301

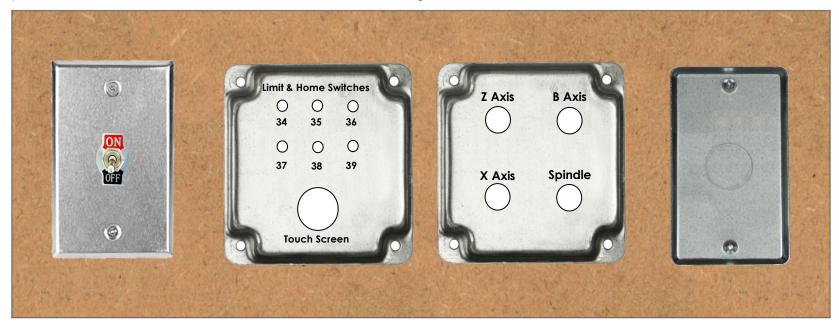
Cabling, part 4

Solder in the cables as noted below.



NOTE: If the jumper is not connected, there will be no power going to the Nextion HMI.

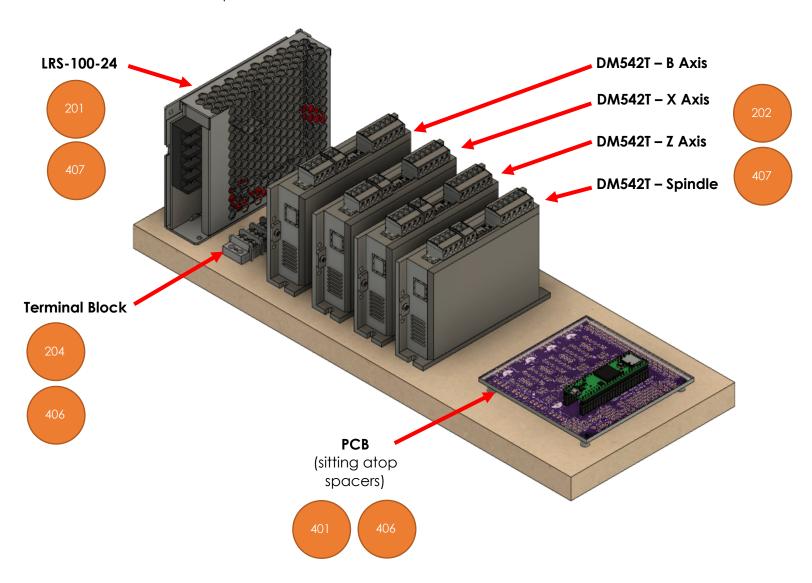
Cabling, part 2


Solder in the cables as noted below.

Assembly of the Control Box Electronics

Mounting the Covers

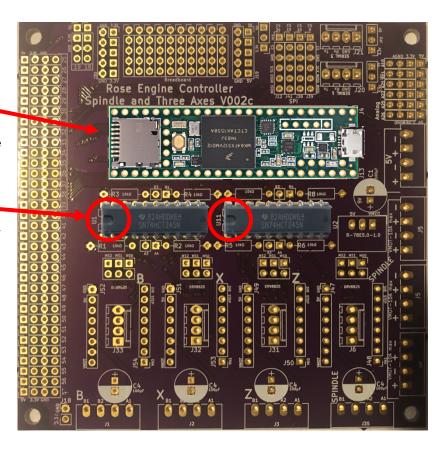
The layout below is recommended. This minimizes cable management issues when used.



NOTE: Screw these plates into place using 5/8" #6, flat head, particle board screws (item #408 in the bill of materials).

Mounting Electronics to the MDF Base

Mount the electronics to the base piece of the MDF.



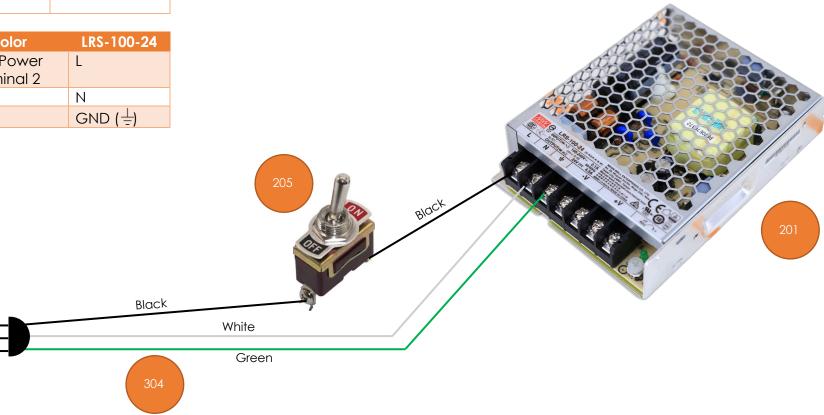
Mounting the PCB to the MDF Board

The Teensy microcontroller is installed onto the PCB as shown in the picture to the right.

The two 74HCT245 integrated circuits are installed as shown in the picture to the right. Note that the indicating mark should be on the left side.

The entire board is secured to the MDF with the $\frac{1}{4}$ " spacers under the 4 corners to place the board so that there is a $\frac{1}{4}$ " gap below.

Wiring - Power Supply (LRS-100-24)


Power Infeed

The power infeed is connected as:

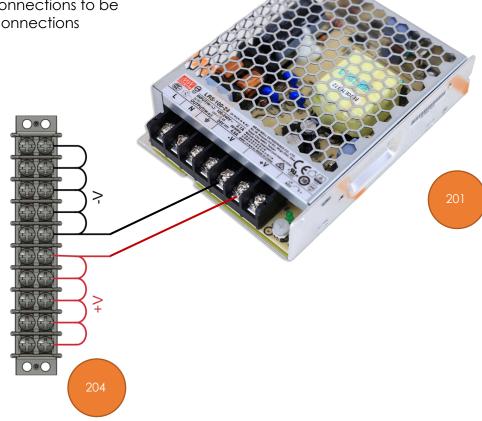
Wire Color	Power Switch
Black Incoming	Terminal 1
Power	
Black Outgoing	Terminal 2
Power	

Wire Color	LRS-100-24
Black from Power	L
Switch Terminal 2	
White	Ν
Green	GND (≟)

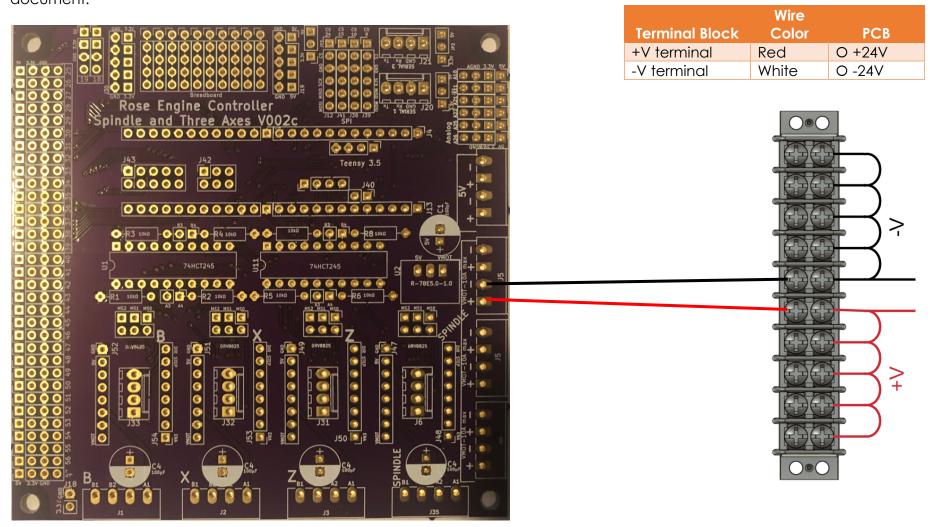
Conductor Type	Stranded copper
Conductor Size	16 AWG (min)
Cable Size	3 conductors / cable

Power Outfeed

terminal block is used to make the installation and maintenance of the system's components easer. Using a terminal block allows connections to be added, changed, or removed without the risk of any other connections loosening.


Conductor Type	Stranded or solid copper
Conductor Size	20 or 22 AWG
Cable Size	2 conductors / cable

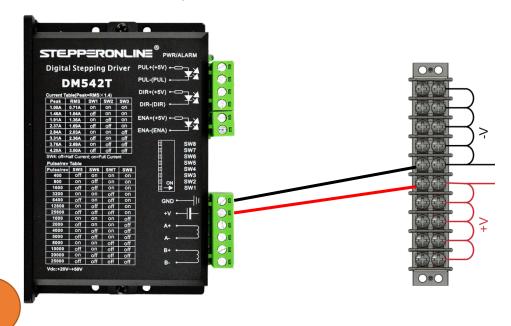
One of the power supply's **+V** outfeeds, and one of the **-V** outfeeds is connected up to the terminal block where the power will be distributed.


- 7. •V is connected to the other side of the terminal block using a white or black wire.

 That same colour wire is then used to cascade the -V side of the power to the next 4 terminals.
- 8. **+V** is connected to one side of the terminal block using a red wire, and then that same colour wire is used to then cascade the +V side of the power to the next 4 terminals.

Power Wiring - Printed Circuit Board (PCB)

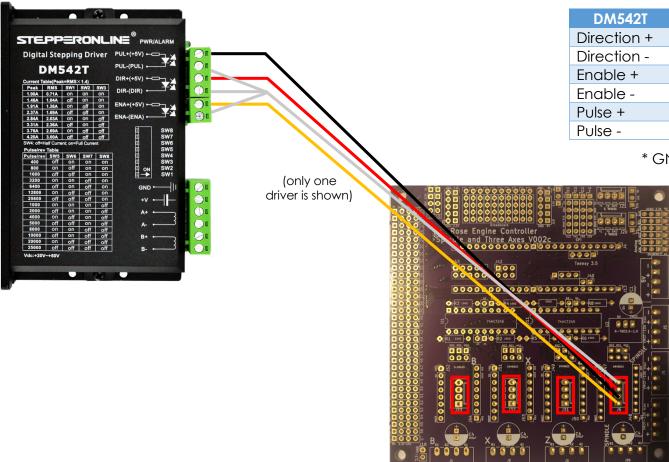
The PCB is connected to the terminal block for power. The cable from the PCB is already in place from earlier instructions in this document.


Power Wiring - DM542T Stepper Motor Drivers (4)

Each of the 4 DM542T stepper motor drivers is connected to the terminal block for power.

Terminal Block	Wire Color	DM542T
+V terminal	Red	+V
-V terminal	White	GND 🛓

Conductor Type	Stranded or solid copper
Conductor Size	20 or 22 AWG
Cable Size	2 conductors / cable



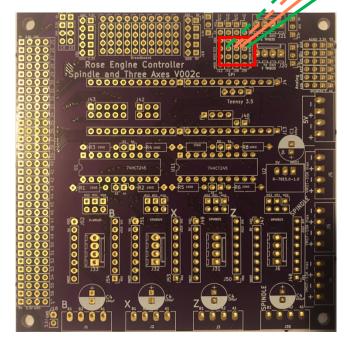
Build Instructions – Stepper Controls

Signal Wiring - PCB to Stepper Motor Drivers (4)

Each of the 4 DM542T stepper motor drivers is connected to the PCB via 20 AWG/4 stranded wire. The cable from the PCB is already in place from earlier instructions in this document. The cabling for the Spindle's driver is shown; the other 3 are similar.

DM542T	Wire Color	PCB
Direction +	Red	O DIR
Direction -	White (GND) *	O GND
Enable +	Yellow	□ ENA
Enable -	White (GND) *	O GND
Pulse +	Black	O STEP/PUL
Pulse -	White (GND) *	O GND

^{*} GND wires tied / bonded together.


Build Instructions – Stepper Controls

Signal Wiring - PCB to RJ-45 Jack for Nextion Display

The Nextion HMI is connected to the PCB via an RJ-45 connector. The cable from the PCB is already in place from earlier instructions in this document.

PCB	Wire Color	RJ-45 Pin
O Rx	White/Green	1
□ +5V	Green	2
O Tx	White/Orange	3
	Blue	4
	White/Blue	5
O GND	Orange	6
	White/Brown	7
	Brown	8

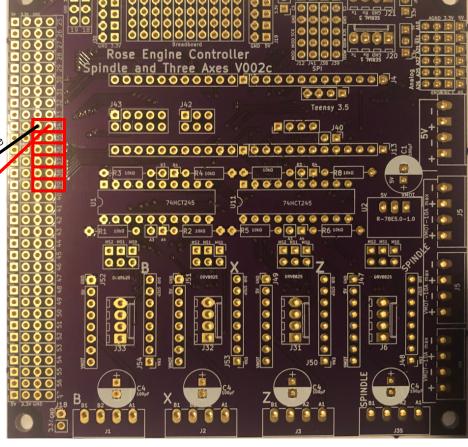
NOTE:

- Tx on the PCB is connected to Rx on the touch screen.
- Rx on the PCB is connected to Tx on the touch screen

Build Instructions – Stepper Controls

Signal Wiring - PCB to 3.5mm Audio Jack for Limit & Home Switches

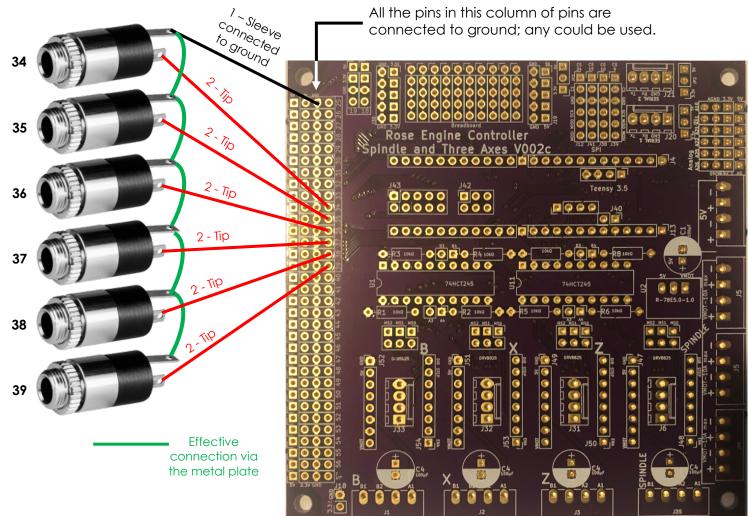
The limit switches are connected to the PCB via a 3.5mm (1/8") audio female jack. Pins 34 - 39 on the Teensy are used (one for each limit switch). The cable from the PCB is already in place from earlier instructions in this document.


PCB	Wire Color	Audio Jack
O pin #	Red	Tip / pin 2
O GND	White or Black	Sleeve / pin 1

KEY POINT: The sleeve must be connected to ground. (details are on the next page for this)

NOTES:

- 1. Most audio jacks that are available are stereo with 3 connectors. Only 2 are needed, so the 3rd one will go unused. Typically, pins 1 and 2 should be used, and 3 should be left unconnected. But check based on the jack you are using.
- 2. Experience has shown that it is a good practice to ensure a mono plug will work correctly for the way you have soldered the connections.



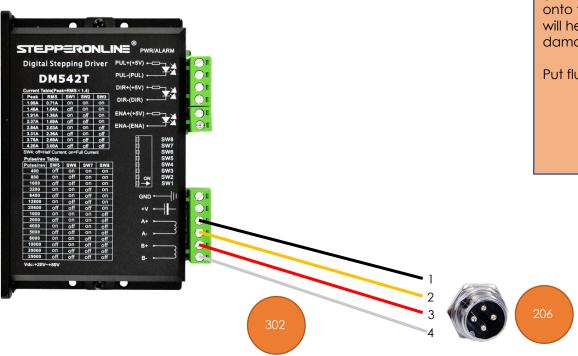
Troubleshooting

The sleeves of the jacks are all effectively connected together as they are all attached to the same metal plate.

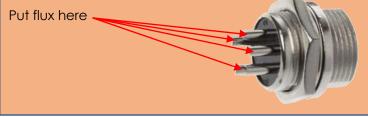
A single ground connection could be made, and indeed this may make diagnostics easier.

If any pin # on the PCB is connected to the sleeve on the plug, you will be shorting that one to ground and no stepper motor movement will happen. Everything will seem to work, but the stepper motors won't start running.

Recommended troubleshooting step is to attach one jack at a time, and ensure it works as expected.


Build Instructions – Stepper Controls

Signal Wiring -Stepper Motor Drivers to GX-16/4 Jacks (4)


Each of the 4 stepper motors is connected to the stepper motor drivers via GX-16/4 Jacks.

DM542T	Wire Color	GX-16/4 Pin
A+	Black	1
A-	Yellow	2
B+	Red	3
B-	White	4

Conductor Type	Stranded copper
Conductor Size	20 AWG
Cable Size	4 conductors / cable
Cable Length	6 to 8"

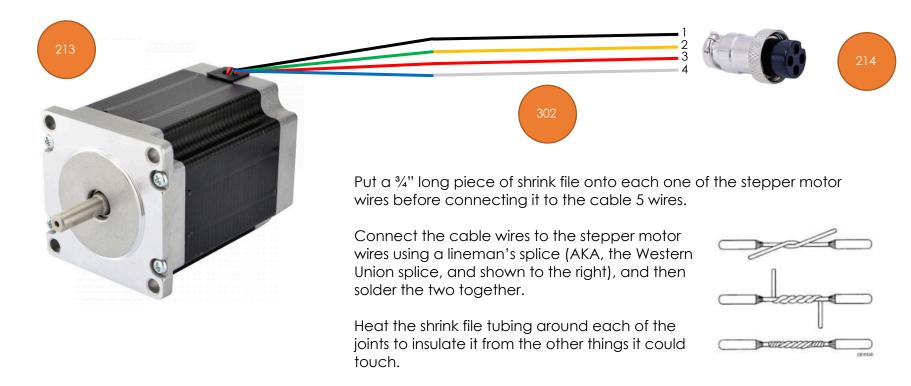
NOTE: When soldering wires to the GX-16 jack, it is a good practice to put a small dab of soldering flux onto the terminal before beginning the soldering. This will help it happen faster, minimizing the chance for damage to the jack.

Switch Settings

Set the switches on the DM542Ts as:

Purpose	Set to	Switch	Setting
	20A Book	1	ON
Current	2.8A Peak	2	ON
	2.03A RMS	3	OFF
	Half Current	4	OFF
Pulses / Rev	6400	5	OFF
		6	ON
		7	OFF
		8	ON

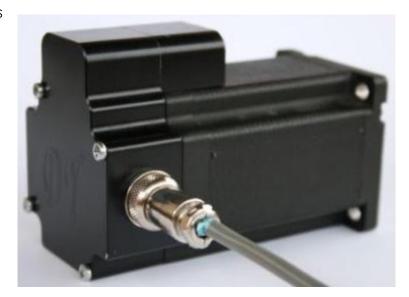
The current could be set higher with this driver; however, the selected NEMA 23 stepper motor does not need that, so it is set thusly.


NOTE: switch settings in the picture are not correct – this is a stock photo from the Internet. Use the settings in the table above.

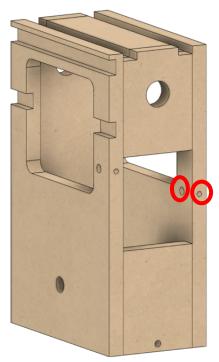
Stepper Motor Connections

Each of the stepper motors is connected to the stepper motor drivers via GX-16/4 plugs. For the spindle drive, a 3-foot cord is recommended. Stepper motor wire colors shown are for the StepperOnline motors. Check that the one you use matches for the connection needed.

Stepper Motor	Stepper Motor Wire	Cable Wire Color	GX-16/4 Pin
A+	Black	Black	1
A-	Green	Yellow	2
B+	Red	Red	3
B-	Blue	White	4


Conductor Type	Stranded copper
Conductor Size	20 AWG
Cable Size	4 conductors / cable

Alternatively, you can add a back cover to the stepper motor. This gives a secure way to attach the signal wires to the motor. These are available from a number of sources, and they can even be 3D printed. Look for one online using the term "stepper motor back cover".

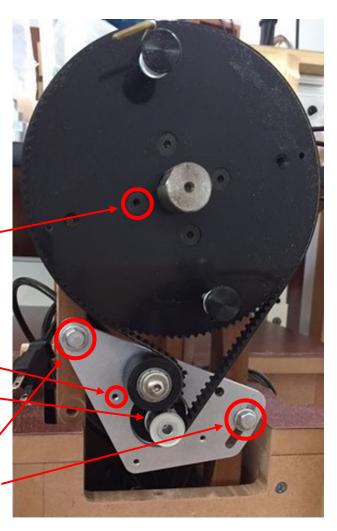

In this case, connect the stepper motor to the GX-16/4 jack as:

Stepper Motor	Stepper Motor Wire	GX-16/4 Pin
A+	Black	1
A-	Green	2
B+	Red	3
B-	Blue	4

Attaching the Stepper Motor to the Headstock

The stepper motor attaches to the headstock as shown in the picture to the right.

If you purchased the kit we supply, the holes on the left and right are already set properly. If you built it yourself, you will now need to drill the holes for the screws on the right. As noted in the case building instructions, these need to be set based on the alignment of the bracket.

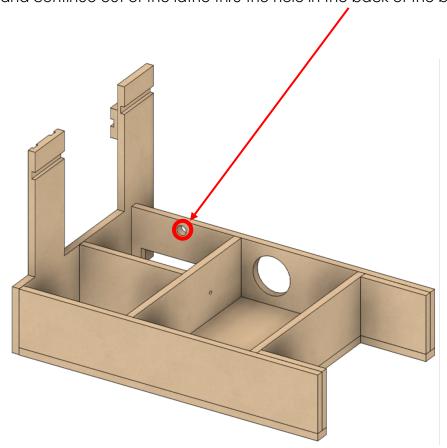

Attach the spindle pulley to the spindle flange. There are 4 screws for this.

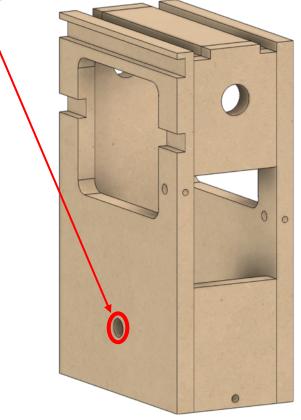
One is indicated here.

Attach the stepper motor to the bracket using 4 screws. One is indicated here.

Secure the 12-tooth drive pulley to the stepper motor's spindle.

Attach the bracket to the headstock on both sides. There are two screws and two spacers (they look like thick washers). The spacers are installed between the bracket and the headstock. They are held onto the headstock using barrel nuts. Do not tighten them just yet.




NOTE: The picture on the right is of the assembly on the original MDF rose engine lathe. On version 2.0, there is no need for the cutout in the base to accommodate the bracket.

Install the timing belt (item #501).

Snug the bracket so that the timing belt is tight enough that it won't slip, but not so tight that it stretches. Once it is set, tighten the two bolts holding the bracket to the headstock. They need to be tight enough to not slip, but don't over tighten them as that will cause the barrel nuts to pull thru the MDF.

The stepper motor's cable needs to be fed thru the hole in the back of the headstock, and continue out of the lathe thru the hole in the back of the bed.



Assembly of the Nextion HMI Box

Attach Nextion Display to the Bezel

One hole is printed into the back side of the bezel for attaching the Nextion HMI (circled in red to the right). That one needs to be enlarged using a #39 drill to a depth of 1/8".

Attach one corner of the Nextion HMI using an M3 Thread Forming Screw, then center the HMI. Drill the other 3 corners, and then attach the display using the remaining M3 Thread Forming Screws.

Note that the Nextion is inserted upside down. This is because the microSD card slot is then pointed

down. And the microSD card slot is accessible so that upgrades can be done without having to disassemble the whole system. (The slot for inserting the microSD card is in the base, not the bezel.)

Attach Parts to the Base

Attach the 4 magnets to the base's bottom. There are 4 insets in the base for these.

If the screws protrude into the base, take some efforts to grind or file those sharp points down.

Insert the Heat-Set Inserts

There are two options here:

1. Using a heat gun, insert each of the heat-set inserts into the corners of the base. These would then be used to attach the top of the case using the 4-40 screws (#403).

If you plan to disassemble the box and reassemble it quite a bit, this is probably the way to go. Otherwise, take option #2 (it is much easier.

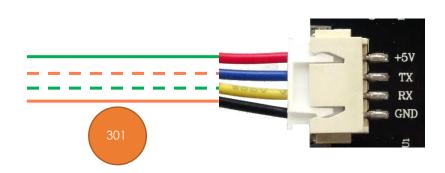
2. Do nothing at this point, and attach the top using thread forming screws (#410)

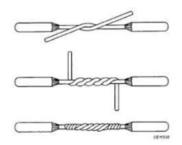
Add Wire Cord Grip

The cord grip is used to ensure the signal wire does not pull against the Nextion display.

Depending on the printing, you may need to drill the whole with a $\frac{1}{2}$ " bit to ease the installation.

Signal Wiring - PCB to RJ-45 Jack for Nextion Display


The Nextion HMI is connected to the connection box via an RJ-45 connector. Using piece of CAT 5 (or greater) wire, 4 feet long, make the connections to the HMI's connector (supplied by the vendor) as shown to the right.


Put a 3/4" long piece of shrink file onto each one of the Nextion wires before connecting it to the CAT 5 wires.

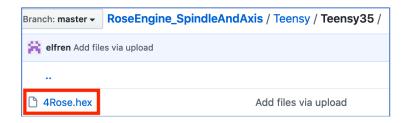
Nextion Connection	Nextion Wire Color	CAT 5 Wire Color	RJ-45 Pin
RX	Yellow	White/Green	1
+5V	Red	Green	2
TX	Blue	White/Orange	3
		Blue	4
		White/Blue	5
GND	Black	Orange	6
		White/Brown	7
		Brown	8

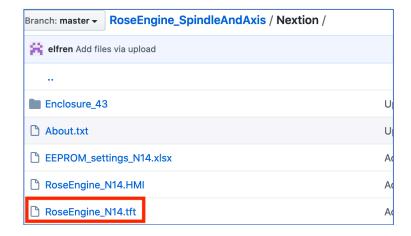
Connect the CAT 5 wire to the Nextion wires using a lineman's splice (AKA, the Western Union splice, and shown to the right), and then solder the two together.

Heat the shrink file tubing around the joint to insulate it from the other things it could touch.

System Setup and Program Loading

Step 1 – Get a copy of the Teensy program file

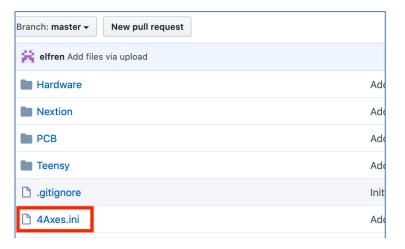

Download **4Rose.hex** to your computer.


Step 2 - Get a copy of the Nextion configuration file

Download **RoseEngine_14.fft** and put it in the root folder of a microSD card.

Notes:

- 1. You can only have one file on this card which is a .TFT file. The upgrade will not work if there is a 2d one.
- 2. You need to check for hidden files on the microSD card. I found that hard to do on macOS (which created a hidden TFT file) and had to do this on a Raspberry Pi.



Build Instructions – Stepper Controls

Step 3 – Get a copy of the 4Axes.ini settings file

Download **4Axes.ini** and put it in the root of a second microSD card.

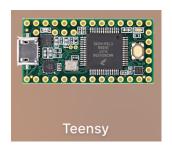
Step 4 - Upgrade the Teensy

Step 4a

Connect the computer to the Teensy.

- The cable end connected to the Teensy uses a MicroUSB connector.
- The Teensy's jack is noted in the picture to the right.

Notes:


Be sure you have a good MicroUSB cable. Some are only used for charging a device (and they are usually longer). These will often not work.

Step 4b

On the Computer, start the **Teensy Loader**. The icon looks like the one to the right.

Note:


If you don't have the **Teensy Loader**, you can get it from https://www.pjrc.com/teensy/loader.html.

Step 4c

Be sure the system shows that the Teensy is connected. This is evident when the Auto button is illuminated green. As noted in step 4a above, if your USB cable is bad, this won't light.

The default for the CPU selected won't handle the whole 4Rose.hex file, so if you try to open it, you will get the message as shown here.

Step 4d

Press the button on the Teensy to load the get the Teensy loader. This will enable the Teensy loader to recognize which CPU you are using and allow the larger program to be loaded.

Step 4e

On the Computer, using the **Teensy Loader**, open **4Rose.hex**.

Once this is loaded, the bottom message will change to reflect the file size (this picture was not updated).

Step 4f

Press the button on the Teensy to load the program file.

Disconnect the computer from the Teensy, and then reboot the Teensy.

Step 5 - Upgrade the Nextion

Secure the microSD card which has the Nextion configuration file (from step 2).

Put this microSD card into the Nextion's microSD card slot.

Reboot the Teensy again.

If this works as expected, it will read

Check Data ... 100% Updated Successed!

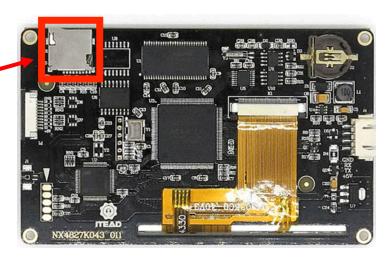
(guess that is a bad translation from Chinese).

After that message appear, remove the microSD card from the Nextion, and reboot the Teensy again.

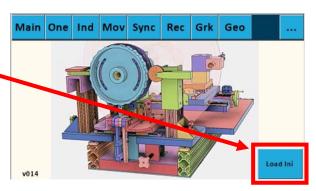
Step 6 - Load the .ini file

Secure the microSD card which has the **4Axes.ini** settings file (from step 3).

Put this microSD card into the Teensy's microSD card slot.


Start the system and click the **Load ini** button on the Nextion screen.

The Load ini button will turn green, and then it will take off.


Once completed, a message will appear saying

Done – Restart may be needed.

Reboot the system one last time.

Step 7 - Verify the Settings

It's a good practice to verify all of the settings once you've completed the steps.

- 1. Touch the Config button on each page and verify the Teensy column is populated with the same numbers as the Nextion column. Repeat for each axis on each page.
- 2. Next verify the Preferences are correct for the Spindle, Axes, Limits, and Returns.
- 3. Select the Main page, then the '...' (Preferences) page. Select the More page. Touch EEPROM. Repeat for each page and axis on the page. This will show all of the settings for the selected page.

A copy of the settings file (4Axes.ini) is on the following pages.

Finishing It Up


Before screwing the bezel to the base, check to be sure everything works. To do that, you will need to use the instructions in the next section to load the programs into all the pieces.

If it works, screw the two pieces together.

If you took the option to use the heat set inserts back on pg. 48, then attach the lid using four #4-40, 3/4" long screws (#403).

Otherwise, attach it using 4 thread-forming screws (#410).

When finished and powered on, it will look like the picture to the right.

4Axes.ini Config File Settings

Setup]	[Limits]	[Main]		
======================================	;Limit Switches	= ;============ ;Axis Ids:		
Microsteps_Spindle=32 StepsPer360_Spindle=200 GearRatio_Spindle=9 Polarity_Spindle=1 Z Axis	Min_Z=34 Max_Z=35 Min_X=36 Max_X=37 Min_B=38 Max_B=39	;;Z=0 ;X=1 ;B=2 ;Spindle=3		
Microsteps_Z=32	Max_b=37	;		
StepsPer360_Z=200	;======================================	= AxisId=0		
DistancePer360_Z=.02	[Returns]	;Spindle		
Polarity_Z=1	;=====================================	= MaxSpeed_Spindle=15000 Accel Spindle=15001		
X Axis Microsteps_X=32	MaxSpeed_Spindle=15011 Accel_Spindle=15012	SpeedPercentage_Spindle=30		
StepsPer360_X=200	-,	;Z Axis		
DistancePer360_X=.02	MaxSpeed_Axis_Z=15013	MaxSpeed_Z=4001		
Polarity_X=1	Accel_Axis_Z=15014	Accel_Z=5002 SpeedPercentage_Z=53		
B Axis	MaxSpeed_Axis_X=15015			
Microsteps_B=32 StepsPer360_B=200	Accel_Axis_X=15016	;X Axis MaxSpeed_X=4000		
GearRatio B=150	MaxSpeed Axis B=15017	Accel X=5005		
Polarity_B=1	Accel_Axis_B=15018	SpeedPercentage_X=10		
DistancePer360_B=1.02 Radia OrLinea =0		;B Axis		
BRadius=5		MaxSpeed_B=5007		
		Accel_B=5008		
		SpeedPercentage_B=59		

[One]		;=====================================	;===== [Mov]]	
;===== ;Spindl ;Z Axis	MaxSpeed_Spindle=25060 Accel_Spindle=20061 SpeedPercentage_Spindle=61	IndexId=1 MaxSpeed_Spindle=5070 Accel_Spindle=5071 SpeedPercentage_Spindle=72 ; ;Division:0 Degrees:2	;===== ;Z Axis	AxisId=0 MaxSpeed_Z=5080 Accel_Z=5081 SpeedPercentage_Z=82 Distance_Z=3	
;X Axis	MaxSpeed_Z=5062 Accel_Z=5063 SpeedPercentage_Z=64 MaxSpeed_X=5065 Accel_X=5066 SpeedPercentage_X=67	;Fixed:0 File:1 ;; ;Index 1 DivisionsOrDegrees_1=2 FixedOrFile_1=0 Size_1=1.875 ;Index 2	;X Axis	MaxSpeed_X=5083 Accel_X=5084 SpeedPercentage_X=85 Distance_X=5.75	
;B Axis	MaxSpeed_B=5068 Accel_B=5069 SpeedPercentage_B=70	DivisionsOrDegrees_2=2 FixedOrFile_2=0 Size_2=24.375 ;Index 3 DivisionsOrDegrees_3=2 FixedOrFile_3=0 Size_3=90	;B Axis	MaxSpeed_B=5086 Accel_B=5087 SpeedPercentage_B=88 Distance_B=5.78	

E]	[Sync]	[Rec]
AxisId=0	;=====================================	;=====================================
pindle	HelixType=0	RadialOrAxial=0
MaxSpeed_Spindle=5090	Revolutions=.3	;Spindle
Accel_Spindle=5091	Distance=10	MaxSpeed_Spindle=5030
SpeedPercentage_Spindle=92	;Spindle	Accel_Spindle=5031
Axis	MaxSpeed_Spindle=5040 Accel_Spindle=5041	SpeedPercentage_Spindle=32
MaxSpeed_Z=5093	SpeedPercentage_Spindle=42	;Z Axis
Accel_Z=5094		MaxSpeed_Z=5033
SpeedPercentage_Z=95	;Z Axis	Accel_Z=5034
	MaxSpeed_Z=5043	SpeedPercentage_Z=35
Axis	Accel_Z=5044	
MaxSpeed_X=5096	SpeedPercentage_Z=45	;X Axis
Accel_X=5097		MaxSpeed_X=5036
SpeedPercentage_X=98	;X Axis	Accel_X=5037
	MaxSpeed_X=5046	SpeedPercentage_X=38
Axis	Accel_X=5047	
MaxSpeed_B=5099	SpeedPercentage_X=48	;B Axis
Accel_B=5100		MaxSpeed_B=5039
SpeedPercentage_B=50	;B Axis	Accel_B=5040
	MaxSpeed_B=5048	SpeedPercentage_B=39
	Accel_B=5049	
	SpeedPercentage_B=49	;Radial
		Radial_Waves=5
		Radial_Spindle_Amplitude=20
		Radial_Axis_Distance=5
		;Axial
		Axial_Waves=4
		Axial_Spindle_Degrees=25
		Axial_Axis_Amplitude=7

;=====================================	;=====================================
;=====================================	;=====================================
Accel_Spindle=5021 SpeedPercentage_Spindle=22	;Spindle
;Z Axis MaxSpeed_Z=5023 Accel Z=5024	MaxSpeed_Spindle=5010 Accel_Spindle=5011 SpeedPercentage_Spindle=12
SpeedPercentage_Z=25	;Z Axis MaxSpeed_Z=5013
;X Axis MaxSpeed_X=5026 Accel_X=5027 SpeedPercentage_X=28	Accel_Z=5014 SpeedPercentage_Z=15 RadialAmplitude_Z=2 AxialAmplitude_Z=2.5
;B Axis MaxSpeed_B=5028 Accel_B=5029 SpeedPercentage_B=29	;X Axis MaxSpeed_X=5016 Accel_X=5017 SpeedPercentage_X=18
;Pattern page RadialOrAxial_Pattem=0	RadialAmplitude_X=2 AxialAmplitude_X=2.5
;4a: 2 4b: 3 3a: 6 3b: 7 2a: 4 2b: 5 PatternType=4 Pattern_PatternsPer360=8 Pattern_PatternCount=1 Pattern_SegmentLength=1	;B Axis MaxSpeed_B=5018 Accel_B=5019 SpeedPercentage_B=19 RadialAmplitude_B=3 AxialAmplitude_B=3.5
;File page RadialOrAxial_File=0 File_PatternsPer360=7 File_PatternCount=1 File_SegmentLength=1	AXIGIATTIPIITOGE_D=3.3
;Segments: 2 Actual: 3 File_SegmentsOrActual=2	

Optional Configurations

If you wish to change the designs built into this system, options are outlined below. We do not support systems with such changes, so the user must be aware that they will be responsible for their own technical support. These options are only provided for the sake of completeness and transparency.

Option 1: Less Functional Model

Some have expressed the desire to build a system which is not as fully functional as outlined in this document. For example, they only want to drive the spindle.

That is very doable but is not an option we will be providing. The components which can be left out when building the system are outlined in the table below.

	Configuration			
Component	Spindle Drive Only	+ Z Axis	+Z & B Axes	+Z, X, and B Axes
10 KΩ Resistors	4	4	8	8
74HCT245s &	1	1	2	2
20-pin DIP sockets				
DM542T Stepper Drivers &	1	2	3	4
GX-16/4 Jacks				

Regarding limit switches, none are truly required. These can be added later as desired. If not used, the 3.5mm audio jacks are not needed.

Recommendation

Except for the DM542T Stepper Motor Drivers, there really is not any significant cost advantage to taking this approach. So, if you do desire to make such a change, consider populating the Printed Circuit Board fully (8 resistors and two 74HCT245s). The DM542Ts can be added when you later want to expand to use them.

Option 2: Alternative Stepper Motor Drivers

The printed circuit board was developed to use either

- the DM542T external drivers outlined above, or
- the Pololu DRV8825 stepper motor drivers which would be attached to the board using header sockets.

Advantages to Using the Pololu DRV8825

- 1. DRV8825s are about 1/3 the cost of an external driver (i.e., the DM542T).
- 2. Having the DRV8825s mounted to the printed circuit board makes for a smaller physical footprint, enabling it to be installed easily inside the lathe's bed carcass.
- 3. The power draw for this configuration is lower, so a different (& potentially less expensive) power supply is possibly available.
- 4. There is less cabling to be done.

<u>Disadvantages of Using the Pololu DRV8825</u>

- 1. DRV8825 chips are limited to a max 1.5 A (vs. 4.2 A for the DM542T drivers).
 - a. This can necessitate the need for different, more expensive stepper motors. The cost of these different motors can erode the savings for not using the external stepper motor drivers (DM542T).
 - b. It is easy to overload the DRV8825 chips and cause them to fail.
 - c. It is easy to overload the DRV8825 chips and they in turn can cause other components to fail (e.g., the Teensy).
- 2. DRV8825 chips get hot when used, so fans must be attached to them to ensure they do not overheat. And the user will need to replace the fans when they fail.
- 3. Future deliverables (e.g., a curvilinear slide and a spherical slide) for the MDF Rose Engine Lathe 2.0 will be tested to ensure compatibility with the design from above. If the add-on devices do not work with the changed configuration, the owner/builder will be responsible for accommodating the necessary changes.

Recommendation

Unless you are an electrical / automation engineer or have substantial experience in this space, the design outlined with external stepper motor drivers will be easier to implement over the long term.

Document Version History

Ver	Date	Comment
1.2	15 Dec 20	 Added parts to the bill of materials Added details on the installation of the 3.5mm phono jacks.
1.1	10 Dec 20	Added details for optional configurations.Added information for attaching the stepper motor to the headstock
1.0.2	07 Dec 20	 Updated p/n for item #204; also updated p/n & qty for item #102. Added note on soldering on 3.5mm jacks first.
1.0.1	05 Dec 20	 Updated commentary about stepper motor needed. Added information about stepper motor mount, pulleys, and belt. Updated drawing dimensions.
1.0	01 Dec 20	Initial document

To the extent that material may appear to be infringed, we assert that such alleged infringement is permissible under fair use principles in U.S. copyright laws. If you believe material has been used in an unauthorized manner, please contact me at ColvinTools@Gmail.com.

The layout of the Printed Circuit Board (PCB) is copyright Ed French and is used with his permission.

Permission is not granted to manufacture these for sale.